22 research outputs found

    Mortality related to Verona Integron-encoded Metallo-β-lactamase-positive Pseudomonas aeruginosa: Assessment by a novel clinical tool

    Get PDF
    Background: Verona Integron-encoded Metallo-β-lactamase-positive Pseudomonas aeruginosa (VIM-PA) can cause nosocomial infections and may be responsible for increased mortality. Multidrug resistance in VIM-PA complicates treatment. We aimed to assess the contribution of VIM-PA to mortality in patients in a large tertiary care hospital in the Net

    Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke

    Get PDF
    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models

    Grambank reveals the importance of genealogical constraints on linguistic diversity and highlights the impact of language loss

    Get PDF
    While global patterns of human genetic diversity are increasingly well characterized, the diversity of human languages remains less systematically described. Here we outline the Grambank database. With over 400,000 data points and 2,400 languages, Grambank is the largest comparative grammatical database available. The comprehensiveness of Grambank allows us to quantify the relative effects of genealogical inheritance and geographic proximity on the structural diversity of the world's languages, evaluate constraints on linguistic diversity, and identify the world's most unusual languages. An analysis of the consequences of language loss reveals that the reduction in diversity will be strikingly uneven across the major linguistic regions of the world. Without sustained efforts to document and revitalize endangered languages, our linguistic window into human history, cognition and culture will be seriously fragmented.Genealogy versus geography Constraints on grammar Unusual languages Language loss Conclusio

    Characterization of Functional and Structural Integrity in Experimental Focal Epilepsy: Reduced Network Efficiency Coincides with White Matter Changes

    Get PDF
    BACKGROUND: Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilized serial resting-state functional MRI, graph-theoretical analysis of complex brain networks and diffusion tensor imaging to characterize the evolution of global network topology, functional connectivity and structural changes in the interictal brain in relation to focal epilepsy in a rat model. Epileptic networks exhibited a more regular functional topology than controls, indicated by a significant increase in shortest path length and clustering coefficient. Interhemispheric functional connectivity in epileptic brains decreased, while intrahemispheric functional connectivity increased. Widespread reductions of fractional anisotropy were found in white matter regions not restricted to the vicinity of the epileptic focus, including the corpus callosum. CONCLUSIONS/SIGNIFICANCE: Our longitudinal study on the pathogenesis of network dynamics in epileptic brains reveals that, despite the locality of the epileptogenic area, epileptic brains differ in their global network topology, connectivity and structural integrity from healthy brains

    Modified structural network backbone in the contralesional hemisphere chronically after stroke in rat brain

    No full text
    Functional outcome after stroke depends on the local site of ischemic injury and on remote effects within connected networks, frequently extending into the contralesional hemisphere. However, the pattern of large-scale contralesional network remodeling remains largely unresolved. In this study, we applied diffusion-based tractography and graph-based network analysis to measure structural connectivity in the contralesional hemisphere chronically after experimental stroke in rats. We used the minimum spanning tree method, which accounts for variations in network density, for unbiased characterization of network backbones that form the strongest connections in a network. Ultrahigh-resolution diffusion MRI scans of eight post-mortem rat brains collected 70 days after right-sided stroke were compared against scans from 10 control brains. Structural network backbones of the left (contralesional) hemisphere, derived from 42 atlas-based anatomical regions, were found to be relatively stable across stroke and control animals. However, several sensorimotor regions showed increased connection strength after stroke. Sensorimotor function correlated with specific contralesional sensorimotor network backbone measures of global integration and efficiency. Our findings point toward post-stroke adaptive reorganization of the contralesional sensorimotor network with recruitment of distinct sensorimotor regions, possibly through strengthening of connections, which may contribute to functional recovery

    Experimental focal neocortical epilepsy is associated with reduced white matter volume growth : results from multiparametric MRI analysis

    No full text
    Focal epilepsy has recently been associated with remote white matter damage, including reduced white matter volume. Longitudinal assessment of these white matter changes, in relation to functional mechanisms and consequences, may be ideally done by in vivo neuroimaging in well-controlled experimental animal models. We assessed whether advanced machine learning algorithm models could accurately detect volumetric changes in white matter from multiparametric MR images, longitudinally collected in a neocortical focal epilepsy rat model. We measured classification accuracy in two supervised segmentation models: i.e. the generalized linear model and the nonlinear random forest model-by comparing computed white matter probabilities with actual neuroanatomically identified white matter. We found excellent overall discriminatory power for both models. However, the random forest model demonstrated a superior goodness-of-fit calibration plot that was close to the ideal calibration line. Based on this model, we measured that total white matter volume increased in young adult control and epileptic rats over a period of 10 weeks, but the average white matter volume was significantly lower in the focal epilepsy group. Changes in gray matter volume were not significantly different between control and epileptic rats. Our results (1) indicate that recurrent spontaneous seizures have an adverse effect on global white matter growth and (2) show that individual whole brain white matter volume can be accurately determined using a combination of multiparametric MRI and supervised segmentation models, offering a powerful tool to assess white matter volume changes in preclinical studies of neurological disease

    No difference in bacterial contamination of hip capsule sutures and control sutures in hip arthroplasty surgery

    No full text
    Abstract Background Perioperative preventive measures are important to further reduce the rate of periprosthetic joint infections (PJI) in patients undergoing total hip arthroplasty (THA). During THA surgery, joint capsule sutures are commonly placed to optimize exposure and reinsertion of the capsule. Bacterial contamination of these sutures during the procedure poses a potential risk for postoperative infection. In this exploratory study, we assessed the contamination rate of capsule sutures compared to the contamination of the remains of exchanged control sutures at the time of closure. Methods In 100 consecutive patients undergoing primary THA capsule sutures were exchanged by sterile sutures at the time of capsule closure. Both the original sutures and the remainder of the newly placed (control) sutures were retrieved, collected and cultured for ten days. Types of bacterial growth and contamination rates of both sutures were assessed. Results Sutures from 98 patients were successfully collected and analyzed. Bacterial growth was observed in 7/98 (7.1%) of the capsule sutures versus 6/98 (6.1%) of the control sutures, with a difference of 1% [CI -6–8]. There was no clear pattern in differences in subtypes of bacteria between groups. Conclusions This study showed that around 7% of capsule sutures used in primary THA were contaminated with bacteria and as such exchange by new sutures at the time of capsule closure could be an appealing PJI preventive measure. However, since similar contamination rates were encountered with mainly non-virulent bacteria for both suture groups, the PJI preventive effect of this measure appears to be minimal

    Altered contralateral sensorimotor system organization after experimental hemispherectomy : A structural and functional connectivity study

    No full text
    Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions

    A quantitative method for microstructural analysis of myelinated axons in the injured rodent brain

    Get PDF
    textabstractMRI studies (e.g. using diffusion tensor imaging) revealed that injury to white matter tracts, as observed in for instance perinatal white matter injury and multiple sclerosis, leads to compromised microstructure of myelinated axonal tracts. Alterations in white matter microstructure are also present in a wide range of neurological disorders including autism-spectrum disorders, schizophrenia and ADHD. Whereas currently myelin quantity measures are often used in translational animal models of white matter disease, it can be an important valuable addition to study the microstructural organization of myelination patterns in greater detail. Here, we describe methods to extensively study the microstructure of cortical myelination by immunostaining for myelin. To validate these methods, we carefully analyzed the organization of myelinated axons running from the external capsule towards the outer layers of the cortex in three rodent models of neonatal brain injury and in an adult stroke model, that have all been associated with myelination impairments. This unique, relatively easy and sensitive methodology can be applied to study subtle differences in myelination patterns in animal models in which aberrations in myelination integrity are suspected. Importantly, the described methods can be applied to determine efficacy of novel experimental treatments on microstructural organization of cortical myelination

    Capnocytophaga canimorsus Mycotic Aortic Aneurysm After a Dog Bite

    Get PDF
    Introduction: Mycotic aortic aneurysm is defined as dilatation of the aortic wall due to infection caused by a variety of microorganisms and is associated with high mortality rates. This case report describes a patient with a rapid growing mycotic infrarenal aneurysm caused by Capnocytophaga canimorsus following a dog bite. Report: A 61 year old male professional dog handler presented with a history of progressive abdominal pain and constitutional symptoms. He had been bitten by a Pit Bull Terrier dog that was attacking a young girl three weeks prior to the onset of complaints. Investigations revealed a mycotic infrarenal aortic aneurysm that grew 0.5 cm in only three days. Open surgical repair consisting of an infrarenal aorto-aortic bypass with a 21 mm x 15 cm bovine bioprosthesis was performed successfully. All cultures and biopsies were negative and the subsequent 16S-23S rRNA intergenic spacer region based polymerase chain reaction (IS-pro) technique revealed C. canimorsus, a Gram negative bacterial pathogen that lives as a commensal in the gingival flora of dogs and cats that can cause a variety of severe infections, as the causative agent. Identification made it possible to treat the patient with eight weeks of intravenous followed by four weeks of oral antibiotics. At the last follow up over a year after surgery, the patient was symptom free, without infection and on ultrasound examination there were no signs of complications or aneurysm formation. Discussion: This case highlights C. canimorsus as a rare cause of a rapid growing mycotic aortic aneurysm following a dog bite. 16S-23S rRNA profiling (IS-pro) led to the identification of the bacterial pathogen. The use of biological grafts should be considered in the management of mycotic aortic aneurysms. (C) 2022 The Author(s). Published by Elsevier Ltd on behalf of European Society for Vascular Surgery
    corecore